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Abstract: Recent advances in structure determination and computational methods have encouraged the
development of structure-based virtual screening. Here we survey progress in the field and review the most
recent methods, validation experiments and real applications, including an in-house example of hit
identification for the oncology target Hsp90. These results provide a basis for discussing the current state of
structure-based virtual screening and to outline the developments that are expected to have a major impact in
the near future.
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INTRODUCTION

Both the hit identification and early lead optimisation
stages of drug discovery are typically dominated by the
search for compounds with improved inhibitory activity.
Historical libraries, as well as newly synthesized or acquired
compounds, are tested in vitro to identify those showing
higher potency. During the last decade or so, the main
strategy to maximize the chances of success and speed-up the
early phases of drug discovery has been the assay of vast
numbers of compounds by means of high-throughput
screening (HTS). Although this strategy has certainly
provided some successes, it has not fulfilled the initial
expectations and it is widely accepted nowadays that a blunt
increase in the number of assayed compounds does not
guarantee better productivity per se [1].

The screening of virtual libraries of compounds by
computational means, also known as virtual screening (VS),
is conceptually and economically very attractive because it
makes possible the evaluation in silico of an almost
unlimited number of chemical structures, only a subset of
which will be selected and subsequently assayed in a low-,
medium- or high-throughput screening experiment.
Although VS is often presented as an alternative to HTS, in
fact both methodologies are highly complementary as noted
in recent reviews [2,3].

Many different methodologies can be included under the
generic title of VS. Based on the criteria used to evaluate
each compound, the following classes can be defined:

i) Chemoinformatics tools. This includes substructural
searches as well as the use of chemical descriptors and/or
properties (either computationally or experimentally
determined) to select molecules based on target-independent
criteria such as drug-likeness [4,5], lead-likeness [6] or
diversity.

ii) Ligand-based methods. In the case when one or more
compounds are known to bind to the biological target, it is
possible to identify molecules which share common features
with them. The underlying assumption is that similar
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compounds can have similar effects; therefore the selected
compounds are expected to have an increased probability of
binding.

iii) Structure-based methods. These methods use the
structure of the biological target and knowledge about the
molecular recognition process to single out compounds with
a good chance of being ligands.

This division is somewhat arbitrary, but is aimed to
reflect both the level of insight into the therapeutic target
and the complexity and computational cost of the VS
process. Whereas the cheminformatics tools are
computationally very efficient, only ligand-based and
structure-based methods are able to select a small number of
structurally diverse compounds with a very significant hit
enrichment. The choice between the two latter methods is
usually based on the availability of the 3D structure of the
therapeutic target.

The acquisition of the structure of the macromolecular
target opens up the possibility of understanding the binding
process and, hence, to rationalize the drug discovery process
and make it more predictable and efficient. This paradigm,
together with recent advances in high-throughput
crystallography and structure determination [7] has boosted
structure-based drug design and the application of structure-
based tools to VS.

A VS campaign typically considers a large number of
compounds (105 to 107). This requirement discards the most
sophisticated structure-based methods and selects molecular
docking as the tool providing the best balance between the
quality of the predictions and the computational cost. In this
review we will describe how molecular docking works,
analyse its performance both in theoretical and real VS
experiments, discuss its applicability to the pharmaceutical
drug discovery process and highlight present and future
methodological challenges.

SUMMARY OF PUBLISHED APPROACHES

Molecular docking was first applied to drug design more
than 20 years ago [8] as a computational tool able to
generate putative binding modes (search algorithm) and rank
them from more to less likely (scoring function). Although
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the basic principles remain the same, many new algorithms
and scoring functions have been developed. A detailed
survey of the progress in the field has been presented in
recent reviews[9-12] and is out of the scope of this paper.
Here we will focus on the similarities and differences
between software packages used in virtual screening.

Virtual screening docking software can be broadly
categorised according to: i) the scoring function (force field,
empirical, knowledge-based), ii) the ligand docking approach
(full flexibility, precomputed conformer library,
incremental/fragment construction), and iii) the search
algorithm (systematic, stochastic, deterministic). Some of
the packages support more than one docking algorithm and
scoring function. In addition, it is common practice to use a
reduced, fast scoring function during the docking process
itself to generate reasonable docking poses for each ligand,
and to introduce more sophisticated, but slower calculations
to rank order the ligands for final selection. A major area of
current research is to introduce more realistic treatments of
desolvation effects into virtual screening scoring functions of
all types.

Empirical scoring functions estimate the binding energy
of a ligand conformation in terms of physicochemical
interactions such as hydrogen bonding, ionic, and
hydrophobic interactions, calibrated against complexes of
known affinity.  Most of the empirical scores in use (e.g.
FlexX [13], ChemScore [14]) today derive ultimately from
the pioneering work of Bohm [15,16], as incorporated in the
LUDI program [17]. Empirical functions generally perform
well in binding mode prediction and hit identification
(enrichment), but are less successful at accurately ranking
active molecules by binding free energy.

Another approach is to define a docking scoring function
in terms of the vdW and Coulombic potentials from a
standard molecular mechanics force field (e.g. AutoDock
[18], DOCK [19]). The potentials often are precalculated
over a receptor grid for performance reasons, making use of
the rigid receptor approximation. vdW grids can be also
combined with empirical polar potentials to produce so-
called semi-empirical scoring functions (e.g. GOLD [20],
rDock [21,22], LigScore [23]).

The final scoring function category is that of knowledge-
based potentials, exemplified by Potentials of Mean Force
(PMFs). PMFs are calculated from observed atom-atom
distribution functions across large training sets of protein-
ligand structures (no binding affinities are needed).
Examples include BLEEP [24], PLP [25], PMFScore [26]
and DrugScore [27].

In incremental construction and fragment-based docking
methods, the ligand is divided into a series of connected,
smaller fragments prior to docking, with the aim of reducing
the combinatorial explosion of possible ligand
conformations to a more manageable level. The critical step
is to identify an appropriate anchor fragment that can be
correctly docked in the binding site, independently of the
intact molecule. Clearly this step must be performed
automatically and is not always successful. Subsequent
fragments are positioned incrementally relative to the anchor
fragment, with local (often systematic) conformational
sampling at each stage.  FlexX [28], DOCK 4.0 [29],

Hammerhead [30] and LUDI [17] all implement variations
on this approach.

In contrast, whole-molecule docking methods deal with
ligand flexibility either via rigid docking of precomputed
conformations, or via stochastic sampling of ligand
dihedrals during the docking process. Rigid docking is
attractive in principle as it reduces the docking problem to
just six degrees of freedom (whole body translation and
rotation), thus allowing systematic docking of each
conformation. The main drawback is in the assumption that
the appropriate binding conformations will be already
present in the precomputed library, as there is little or no
opportunity for induced fit of the ligand to the binding site.
Examples of software that provide rigid docking protocols
include EUDOC [31], FLOG [32], and the North Western
University version of DOCK [33] (NWU-DOCK).
LigandFit, from Accelrys [23], uses a shape discrepancy
function to favour the generation of ligand conformations
that are complementary to the shape of the docking cavity,
prior to rigid body minimisation.

The highest level of docking accuracy in reproducing
known ligand binding modes (see later) can be generally
achieved with ‘on-the-fly’ flexible ligand docking, as this
does not suffer from either of the problems highlighted
above for incremental construction and rigid docking. Monte
Carlo (MC), Genetic Algorithm (GA) and ‘Tabu’ methods
are most commonly used to drive the stochastic search
towards the global energy minimum.  Examples include
GOLD [34] (GA), AutoDock [35] (GA/MC), ICM [36]
(MC), PRO_LEADS [37] (Tabu), Glide [38] (MC) and
rDock [22] (GA/MC). Multiple independent docking runs
per ligand are usually required to achieve convergence with a
reasonable degree of confidence, particularly for flexible
ligands, and this can be an issue in the context of virtual
screening of large libraries.

We have developed rDock [21,22] as a modular, high
performance virtual screening platform for protein and
nucleic acid targets. Efficient docking is achieved through a
combination of GA, MC and Simplex algorithms, semi-
empirical scoring functions, and a progressive protocol that
terminates poorly scoring ligands early in the search.
External pharmacophoric, Cartesian and NMR distance
restraints can be incorporated into the docking score to
conduct more focused searches around experimentally
observed or user-defined binding mode requirements.
Artificial intelligence-derived post-docking filters have been
evolved for the automated removal of likely false positives
[39].

VALIDATION OF VS

By definition, the validation of a VS method can only
come from comparing the outcome of two experiments
carried out in parallel: a) a pure random screening of N
compounds; and b) screening of a subset of these
compounds selected with the VS method of choice. To date,
such a blind test has never been published, and even when
direct comparisons between random and rational screenings
can be made (see references [40-42] and below), one could
argue that it’s not VS in general but the specific protocol
used that is validated. Certainly, the outcome of a VS is
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Table 1. Quality of Binding Mode Predictions of Different Docking Programs. As Noted in the Text, Comparisons
Across Test Sets and Programs Should be Done Cautiously

Success rate (%)
Ref. Program Mode Na RMSD<1.0Å RMSD<2.0Å

[34] GOLD Standard 100 35 66

[44] GOLD Standard 305 44 68

GOLD Standard 180b 51 73

[45] FlexX Standard 200 19 49

[46] DOCK Chemical Dock 200 7 14

DOCK Energy Dock 200 43 53

DOCK SCORE Dock 200 41 54

[47] High Quality 103 31 46

[48] Surflex Standard 81 48 78

Surflex Standard 66c 48 77

[22] rDock Standard 157 34 70

rDock Solvation docking 157 39 73

rDock Solvation docking 66c 59 82
a Number of crystal structures included in the test set.

b Clean set with crystallographic resolution ≤ 2.5Å (recommended test set [44])

c Overlapping test sets between Surflex and rDock

always the composite of the tools used (methodologies),
how these tools have been used (user control) and the
introduction of empirical information (subjective input).
Hence the analysis of “real and dirty” experiments might not
be appropriate for comparison of methodologies, but it is the
ultimate test for any screening software. In order to avoid the
subjectivity of real VS, several ideal experiments have been
designed to assess the performance of docking tools. In the
following sections the performance of several docking
packages and protocols are compared by means of clean,
artificial experiments, and real cases.

Reproduction of the Experimental Binding Mode

One of the main applications of molecular docking
programs is the prediction of binding modes of known
ligands in the absence of experimental information;
accordingly, the so-called ‘docking problem’ has received
much attention. Although in a docking-based VS it could be
considered a secondary goal, the correct prediction of the
binding mode is important for two main reasons: a) the
underlying assumption in docking dictates that the “real”
binding mode will have the best score, therefore a real binder
will have a better chance of being selected if its binding
mode is correctly predicted; and b) in real VS experiments,
the predicted binding mode(s) are used to filter out
compounds with unsatisfactory interactions with the
receptor, which means that a real binder might be discarded
if the binding mode is poorly predicted.

In most cases the docking programs have been tested
with relatively small number of ligand-receptor complexes,

but with the expansion of the PDB [43] bigger test sets are
becoming the norm. Table 1 summarizes the published
binding mode prediction experiments with large sets of
structures [22,34,44-48]; the EUDOC publication [49] has
been omitted from the table because it performs rigid
docking of the ligand in the crystal structure conformation,
whereas all the other programs perform a flexible-ligand
rigid-receptor docking. LigandFit has been omitted also as,
despite reporting very impressive results [23], the test set
consists of just 19 protein-ligand complexes.

A direct comparison between software is hampered by the
different size and composition of the test sets. This is
illustrated by the different apparent performance of Surflex
[48] and rDock [22], from 78% vs. 73% when comparing the
full sets, to 77% vs. 82% when comparing only the 66
common structures. In that respect, the recent work by
Nissink et al. [44] deserves particular consideration because
it not only contains the largest set of structures (305), but
also the so called “clean lists” of structures, which have been
checked for diversity, structural errors and packing effects.
Since this test set has been made freely available, it would
be desirable for future studies to use it, thus allowing a
straight comparison of the different docking packages.

In spite of the qualitative nature of any comparison, it is
apparent from Table 1 that some programs, namely GOLD
[34,44], Surflex [48] and rDock [22], provide satisfactory
binding modes (less than 2Å root mean square deviation;
RMSD) for around three quarters of the structures while a
second group of programs provides satisfactory predictions
in only half the cases. The predictions with RMSD lower
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Table 2. Summary of Published Results with Seeded Libraries. As Noted in the Text, Comparisons Across Publications and
Biological Targets Should be Done Cautiously

Ref. Target A N F(%) C(%) EF

[50] Thrombin 32 1052 10 94 9

Progesterone Receptor 28 1048 10 64 6

[51] p38 MAP Kinase 256a 10256 0.8 9 11

IMPDH 91a 10091 0.4b 13b 30b

HIV protease 360a 10360 0.3b 10b 29b

[52] Thrombin 32 1032 10 84 8

[53] Thymidine Kinase 10 1000 2.9 70 24

Estrogen Receptor 10 1000 1c 70c 70

[47] Plasmepsin II 134 13020 3.8 13 3.3

[54] T4 Lysozyme (L99A) 51 172118 0.1 14 137

          “    (L99A/M102Q) 58 172118 0.1 17 172

[55] D3 Receptor (antagonist) 10 1000 3.7 70 19

M1 Receptor 10 1000 5.3 50 9

V1a Receptor 10 1000 1.3 50 38

D3 Receptor (agonist) 10 1000 1.8 60 33

β2-adrenergic Receptor 10 1000 2.6 70 27

δ-opioid Receptor 10 1000 3.3 90 27

[38] COX2 128 7656 2 36b 18b

Estrogen Receptor 55 7583 2 58b 29b

p38 MAP Kinase 72 7600 2 25b 12b

Gyrase B 36 7564 2 36b 18b

Thrombin 67 7595 2 53b 26b

Gelatinase A 43 7571 2 36b 18b

Neuramidase 51 7579 2 82b 41b

[40] Angiogenin 12 18111 2 42 21

[23] Thymidine Kinase 9 1002 1 22 22

[48] Thymidine Kinase 10 1000 1 50 50

Estrogen Receptor 10 1000 1 80 80

[22] Thymidine Kinase 10 1010 1 40 40

Estrogen Receptor 10 1010 1 80 80

Thrombin 19 1019 1 37 38
a Binders with 1.0 to 30.0 µM activity (see text)

b Data extracted from figures

c Estimated values

than 1Å apparently are much more test-set dependent, as
seen by the different GOLD (from 35% to 51%) and rDock
sets (from 39% to 59%) and do not allow cross-
comparisons. It is difficult to draw conclusions as to why
some programs perform better than others, but we consider
that the following two factors might be partially responsible:
i) conformational search algorithm: all the best-performing
programs allow for full flexibility of the ligands during
docking, whereas FlexX and DOCK use incremental
construction and the program in reference [47] does rigid
docking followed by a ligand optimization step; ii) training
set: the programs developed in recent years have benefited
from larger and more diverse sets of structures to re-weight
the different terms of the scoring functions. Based on the

data available, there is no conclusive evidence to suggest
that empirical scoring functions are necessarily better than
force-field based ones. Interestingly, the best-performing
programs have been developed in recent years and provide
not only accuracy but also enough speed as to screen large
virtual libraries in reasonable time (especially Surflex and
rDock).

When docking is used as a VS tool, it is not strictly
essential for the experimental binding mode to be the best
scoring pose but, since the generated poses are often used
during postfiltering (forcing interaction with a particular
residue, for instance), it is important that the “true” binding
mode is at least present amongst the various solutions. All
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the publications report the presence of low RMSD poses
(97%, rDock solvation [22]; 91%, Surflex [48]; 86%,
Diller’s program [47]; 91%, SCORE Dock [46]; 70%,
FlexX [45]), which is not surprising given that in most
cases an exhaustive docking has been performed. In fact, it
would be much more informative to know if a low RMSD
conformation is found within the high-scorers, unfortunately
this is not always reported and comparison can not be made.

Nissink et al. [44] compared the success rate of GOLD
across protein classes, concluding that the mean RMSD
values for aspartic proteases and lyases are significantly
higher, but this seems to be more related to the nature of the
ligands (large and very flexible) than to the docking cavity
itself. In fact, whenever reported, an inverse relationship
between the accuracy of the results and the number of
rotatable bonds (nRot) of the ligands is observed [45-48];
the impact of this tendency should be relatively small in VS
if drug-like (nRot≤8 [5]) or lead like (nRot≤10 [6]) filters are
applied upfront.

In conclusion, the performance of most of the programs
and scoring functions appears good enough for VS purposes,
although it would be advisable to consider not only the top
scorer poses but also those energetically similar. It is
expected that larger, more diverse and universally available
test sets will drive future improvements of the scoring
functions and allow critical comparisons across different
methods.

Enrichment Factors

The ability of docking to perform VS can be assessed by
rank ordering a library of random compounds (allegedly
inactive) “seeded” with true binders or, even better, doing a
retrospective analysis of a screened library. Recent examples
of such experiments are summarized in Table 2
[22,38,40,47,48,50-55]. These “seeded libraries” have often
been used to compare docking protocols and scoring
functions. The results in Table 2 report the optimal solution
for each macromolecular target, thus it represents the
maximum performance that can be expected from current
methods rather than standard degrees of success. The results
are presented in terms of the following parameters: F is the
Fraction of the library selected at the top of the ranked
library; C  is the Completeness, or the fraction of active
compounds in F (both in percentage); EF is the Enrichment
Factor. The corresponding formulae are:

F =
n

N

C =
a

A

EF =

a
n

A
N

C

F

x 100

x 100

=

Where N is the total size of the library; n the number of
compounds selected after screening; A the total number of
active compounds; and a the number of true binders in the
selection. Whenever possible, the top 1% of the library

(F=1) or a similar fraction is used for the statistics; this
would translate in the selection of one thousand compounds
from a 0.1 million compound library, which is reasonably
close to a typical VS experiment.

It is apparent from Table 2 that the results are very
dependent on the macromolecular target. In fact, when the
same true binders are used, the results are remarkably similar
between different methods (e.g. thrombin [50,52]) and
between different authors (e.g. thymidine kinase [22,48];
estrogen receptor [22,48,53]). This is in line with the well-
known observation that some targets (or rather docking sites)
are intrinsically more difficult than others and suggests that
different optimal solutions share a common target-dependent
limit of success. The data provided by Bissantz et al. [55]
suggests that homology modelled docking sites can provide
very acceptable results. One has to be careful when
interpreting the results for the best-behaved receptors,
because EF can be dependent on the size of the library.  For
example,  if the random library is increased from 1 to 10
thousand compounds, performance of rDock with the
estrogen receptor increases from EF=80 (F=1) to EF=700
(F=0.1) (Morley, S.D., personal communication [56]). This
might partially explain the extraordinarily high EF observed
with the Lysozyme mutants [54], a system with a very small
binding site unable to accommodate the large ligands
presumably found in the docking library (the Available
Chemical Directory, ACD).

Another factor affecting the results is the nature of the
active molecules.  Charifson et al. [51] tackled this problem
by dividing the active compounds into sub-libraries based
on range of activity (<0.1µM; 0.1-1µM and 1-30µM). As
expected the results are substantially better for libraries
seeded with compounds that are more active. As the authors
state, the last range of activities (1 to 30µM) are more
representative of a real VS situation and the result for that
set is reported in Table 2. Unfortunately it is uncommon for
such a large and complete set of data to be publicly
available, therefore different groups have used different data
sets and comparisons across publications can not be made
even when the same protein is studied (e.g. p38 [38,51],
estrogen receptor [38,53], thrombin [38,50]).

A somewhat less characterized factor affecting the final
results is the nature of the so called “random set”. Fradera et
al. [52] made the interesting observation that the quality of
the predictions decreased with more drug-like random
libraries. A possible explanation for this behaviour is that
drugs have more chemical functionalities and, therefore, a
higher probability of making favourable contacts with the
binding site than non-drugs. The apparently poor
performance of Diller’s and Merz’s program [47] can be
explained by the nature of the test set.  Both the active and
inactive compounds are elaborated from the core of pepstatin
(a binder of plasmepsinII). This is in agreement with
previous observations [50] that docking cannot differentiate
active compounds from structurally similar but inactive
compounds.

Several papers [38,40,51,53,55] show comparisons of
results obtained with different docking programs, the overall
conclusion being that the scoring function has a far deeper
impact than the software in the final performance. As
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expected [57], consensus scoring has repeatedly shown to
provide the best EF [38,40,51,53,55], but given the trade-off
between EF and completeness, this method tends to miss a
large proportion of true binders.

One of the main conclusions drawn from all these studies
is that it is not possible to know a priori the best docking
protocol for a given site, thus it is highly advisable to
construct “seeded libraries” and fine-tune the VS protocol
whenever enough experimental data is available. On the
other hand, if this is done properly, it is possible to identify
one (or more) optimum protocols able to provide high
enrichment factors (and hit rates) for most targets and
libraries. The downside to this approach is that a significant
number of true binders will be missed (false negatives).
Although most of the best EF published range from 10 to
70, as we will see in the next section, reported EF in real
cases are significantly better. Possible reasons for this will
be discussed.

Real Cases

Table 3 summarizes the most recently published VS
experiments [31,41,42,58-77]. In this section we will
describe the different steps common to any VS campaign,
referencing real applications.

Definition of the receptor

Once the biomolecule of pharmacological interest has
been decided, the first step is to obtain the coordinates,
generally by X-ray crystallography, but homology models
have also been used [67,70]. Since most programs need a
predefined volume to dock against, a subset of the
biomolecule has to be selected at that stage. In most cases
this is a straightforward step (e.g. the active site of an
enzyme), but if the target is poorly characterized this
decision will require thorough analysis of the structure and
function of the target. This potential weakness of the
docking methodology can become a strong point if the
interest is to find binders to a specific site rather than general
inhibitors [75].

The conformational flexibility of the biomolecule around
the docking site has to be evaluated next. Docking programs
can only consider the flexibility of the receptor to a limited
extent and, even then, this comes with a major increase in
computational cost, thus limiting its application to a small
number of compounds [63,68,72,74]. With this limitation
in mind, it is important to select a conformation of the
docking site as representative as possible. This is generally
done by using a structure with a bound ligand and, whenever
possible, testing the definition of the cavity with other
ligands for which the binding mode is known (cross-
docking). When the protein is known to adopt very different
conformations, the use of several representative structures
would be advisable.

In nearly all cases, the resolution of the crystal structure
is not high enough to identify the position of hydrogen
atoms. Unless a united-atom model is used, hydrogen atoms
will have to be added. Polar hydrogens are particularly
important for hydrogen bonds and often require examination
of the surrounding to determine the most likely position.
The protonation state of ionisable residues should also be
considered. Some programs allow conformational flexibility

to polar hydrogens to guarantee the best possible fit with
any ligand.

Ions, ligands and solvent molecules found in the crystal
structure are generally stripped from the docking site,
nonetheless it is important to detect interstitial waters that
might play an important role for the molecular recognition
of the ligands, as worse results are generally obtained when
key water molecules are not considered [44]. Some water
molecules can either be displaced or interact with a ligand.
This dual behaviour can be simulated using the particle
concept [78]. If cofactors or non-standard residues are found
in the active site, it might be necessary to assign some
parameters manually. Similarly, if particular atoms are
known to be crucial for the interaction with the ligands, the
parameters of these atoms could be artificially modulated
[73] to reproduce the observed interaction affinity.

Preparation of the Small Molecule DataBase

Thanks to its ready accessibility, the ACD and the
National Cancer Institute collection (NCI) are the most
popular databases in the published approaches, but other
commercial, in-house and virtual databases have also been
used. Generally the libraries contain 2D representations of
the molecules and have to be converted to 3D. Reference
[79] provides a comparison of various 3D structure
generators.

Whenever possible, undesirable compounds should be
removed upfront to avoid wasting computational time. For
this reason, drug-like [4] and other target-independent filters
are commonly applied at that stage. These filters include
descriptors such as molecular weight, presence of a given
chemical moiety [74], number of rotatable bonds, rings or
formal charges, as well as molecular properties (solubility,
logP, etc).

Subject to the availability of ligand-based information or
detailed analysis of the ‘hot spots’ of the binding site,
receptor-specific filters based on pharmacophoric models
[74,76] or similarity [74] can also be applied. In order to
reduce significantly the number of compounds to be docked,
the pharmacophore(s) will have to be fairly elaborate.
Although very useful to reduce the initial number of
compounds and focus on the potentially more interesting
ones, these approaches have the drawbacks of introducing a
labour-intensive extra step and having to combine several
programs not necessarily compatible in terms of input-
output format.

Either for efficiency or simplicity, some docking
programs do not treat the flexibility of the ligands
explicitly. In these cases, a library of conformers is usually
generated before docking.

Docking

The references in Table 3 include a fairly diverse set of
docking programs. Besides the differences in search and
scoring protocols, the programs also differ in their ability to
include additional constraints during the docking run. In
certain cases, modifications of the potential has been used to
force chemical complementarity [41,73] or occupancy [62] of
certain regions of interest within the active site, to establish
hydrogen bonds with a particular atom of the receptor [66] or
to use the similarity to a ligand of reference [74]. These
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constraints are a powerful mean of introducing empirical
information during docking and can both speed-up the
calculation and provide a better chance of success but, if not
carefully chosen, the opposite effect might arise.

If the time scale needed to dock the full library is a
realistic one, the most accurate docking protocol will be
used.  However, if this is computationally too expensive
(either because the size of the library is too big or the
software is not fast enough), alternative protocols can be
constructed to vary the accuracy of docking as the
calculations proceed (see Table 3 for examples).

Postfilter

Filters such as the ones described in preparation of the
database can also be applied here. Although at this stage it
does not save computational time, it allows visualization of
the putative binding modes of the excluded compounds, the
use of more accurate (i.e. computationally more expensive)
methods to evaluate molecular properties, and a more
informed decision.

Many of the published VS make extensive use of visual
inspection of the docking output to select the final set of
compounds. It is worth noting that, since only one (or a
few) poses per ligand will be visualized, this step relies on
the ability of the docking program to identify the “real”
binding mode. For some programs the proportion of
compounds correctly docked is only 50%, and even the best
performers can only predict correctly up to 80% of the
structures (see above). It would be advisable then to explore
visually several binding poses. Either way the labour
intensive character of this post-filter makes it unsuitable for
large scale applications and it would be preferable to use
automatable rules, which could be applied to all the poses
and/or large collections of compounds.

Other post-filter criteria include the final score, a proper
balance between polar and apolar terms, chemical
tractability, diversity, solubility, and practical issues such as
price, availability and quality control of the compounds.

Once the final selection of compounds has been made,
the compounds have to be purchased, synthesized or picked
out from the in-house library of compounds. Often this
process results in an attrition rate of 10% to 50%, depending
on the library.

Outcome andProgression

The ultimate goal of any screening campaign is to
identify new chemical entities for progression, therefore, a
VS is only successful if the hits are: 1) reasonably potent
(generally below 10-30µM); 2) active through binding to the
docked site (binding confirmed by competitive assays,
NMR, X-ray, or other methods); 3) amenable to evolution in
a medicinal chemistry program; 4) novel (i.e. have a
favourable intellectual property position). Depending on the
project, additional criteria will have to be met (e.g.
antimicrobial activity for antibiotics). In short, the quality of
the hits is a much better measure of success than the
quantity. Most of the published works report only the
number of hits, but in a few cases extra steps have been
taken to confirm binding to the docking site, either by NMR
[59,67,70] or X-ray crystallography [69,73,74,77]. In all but
one case [77] the computationally predicted binding mode

was in very good agreement with the experimentally
determined one. Other authors report various degrees of hit
progression [58,66,69,71] and even biological activity
[61,64,65,67,72,73,75]. But overall it is not possible to
know how many of the hits became leads or if the attrition
rate is better for VS-generated hits than for the HTS-
generated ones.

When considering only the number of hits, the reported
values seem well above what one would expect at random,
but just in five cases a control experiment is reported. Perola
et al. [64] and Wu et al. [77] included a control group of the
same size as the VS hit list  (21 and 28 respectively).  This
can be useful to show that VS works better than random
selection of compounds, but statistically it is not significant
enough to calculate enrichment factors. Direct comparison
between a HTS experiment and VS has only been previously
reported in two cases [41,42] and we provide a third example
(see below).

The Merck paper [42] does not provide the absolute
number of compounds and hits, but give hit rates of 6% and
≤0.2% for VS and HTS respectively, resulting in a ~30-fold
improvement. This comparison is very relevant because both
HTS and VS screened the Merck chemical collection
(although different subsets of it) and used exactly the same
experimental protocol. Interestingly this EF is within the
range reported with seeded libraries (see Table 2), as should
be expected from a VS protocol which relies solely on
docking.

The work by Shoichet’s group [41] does not provide
such a clean comparison between HTS and VS because 1)
different libraries were screened, the one used for HTS
(Pharmacia’s in-house library) not being very drug-like; 2)
the assay conditions used for VS hits were more permissive
than the ones used for HTS; and 3) the VS hits were
screened using a medium-throughput assay probably more
accurate and sensitive than the HTS. As a result, the authors
reported a value of 1700 as an upper estimate of the EF.

In spite of the limitations stated above, it seems clear
that the EFs reported by Doman et al. [41] and here, as well
as the hit rates of most of the VS experiments in Table 3,
are well above reasonable expectations for pure docking VS.
In our opinion this is due to several factors: i) pre-filters
applied to the commercial libraries to guarantee a minimum
drug-like character or appropriate chemical composition of
the docking library; ii) use of empirical information during
or after docking (e.g. chemical labelling of the docking site,
visual inspection, fulfilment of a pharmacophore) to bias the
results; iii) the intrinsic value of low- or medium-throughput
screening assays, generally more accurate that HTS.
Obviously, the goal of a VS experiment is not to prove the
methodology but to obtain good hits. Accordingly, an
inspection of Table 3 shows that it is common practice to
assist and modify the docking protocols with all sorts of
complements, although this blurs the contribution of each of
the components.

Finally, we would like to emphasize that the different
works referenced in Table 3 cannot be compared in term of
hit rates, because different targets have different hit
propensities and because the hit rate is heavily dependent on
the screening method and the definition of hit (ranging from
“measurable activity” to <500nM in the examples provided).
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Moreover, given the small number of compounds assayed in
most of the reported VS, the hit rates are not statistically
very significant.

VS AGAINST HSP90, AN INDUSTRIAL EXAMPLE

Most of the published examples of VS involve very
labour intensive processes and the selection of a very limited
number of compounds. In an industrial environment, where
the pressure is on the rapid identification of new hits, more
automated VS protocols are necessary and a greater number
of compounds are typically assayed. In this section we
exemplify this with a VS campaign against Hsp90 done in
our company.

Definition of the Receptor

The identification of small ligands of Hsp90’s ATP
binding site through our proprietary SeeDs technology [80],
allowed the design of enrichment experiments to identify the
definition of the cavity yielding best results. This included 3
interstitial water molecules consistently found around Oδ2
of Asp93.

Following the finding that the conformation of the 110-
115 loop can be altered significantly upon binding of PU3
[81], two structures of Hsp90 were used: 1YET [82] and an
in-house structure of the PU3-Hsp90 complex [81].

Preparation of the Small Molecule Database

rCat is our proprietary catalogue of 3.5 million
compounds. A docking library of 0.7 million compounds
was selected from rCat based on: i) crude drug-like filters
(molecular weight 250-550Da, and six or less rotatable
bonds); ii) removal of reactive groups (a list of unstable
chemical moieties was compiled based on chemical expertise
and substructural searches were performed to clean the
docking library of molecules containing reactive groups);
and iii) vendor delivery timelines.

These pre-filters were carried out using Isis/Base [83] and
MOE [84]. The program CORINA [85], version 2.63, was
used to convert the docking library from 2D to 3D. The
same program was used to generate multiple ring
conformations; the internal energy threshold was set to 7
KJ/mol. This allows the treatment of cyclic groups as rigid
bodies. The total number of docked conformers was 1.7
million.

Docking

rDock [21] was used to screen the docking library against
Hsp90 using two different crystal structures: Geldanamycin-
bound [82] (PDB entry 1YET) and PU3-bound Hsp90 [81].
Binding to PU3 produces a very significant conformational
change of the backbone of the protein in the region of the
active site and it was deemed necessary to consider both
conformations. rDock was used for docking in its high-
throughput mode [22]. 4300 compounds were selected using
cavity 1 and 6000 using cavity 2, totalling approximately
9000 non-redundant compounds.

Postfilter

Those compounds binding almost exclusively through
polar or apolar interactions were removed to guarantee an

adequate balance of these terms, in agreement with the
composition of the targeted site. All the Hsp90 inhibitors
for which a structure is available [82,86,87] form a hydrogen
bond with one carboxylic oxygen of Asp93 and accept a
second hydrogen bond from an interstitial water molecule, as
shown in Fig. (1). Using a Perl script created in our lab, the
binding poses not satisfying this donor-acceptor motif were
discarded.

Fig. (1). Binding mode of ADP (top), Geldanamycin (middle)
and radicicol (bottom) to Hsp90 (PDB entries 1BYQ [87], 1YET
[82] and 1BGQ [86], respectively). These three binders display a
common hydrogen-bond donor/acceptor motif, represented by
solid (donor) and dashed (acceptor) lines.

The remaining compounds were clustered in chemical
families to assess their diversity. Over-represented families
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were purged with MOE [84] based on chemical diversity.
The top 1000 remaining scorers were selected for purchase.
Of those, 719 compounds were actually available and
assayed.

Outcome and Progression

Out of 719 compounds assayed, those inhibiting the
ATPase activity of Hsp90 by more than 50% were selected
for titration measurements, providing 13 compounds with
IC50<100µM (1.8% hit rate) and 7 with IC50<10µM (1.0%
hit rate). Interestingly, two hits are closely related to a
compound identified by HTS by a research partner
(Workman, P., oral presentation at the 94th annual meeting
of the American Association for Cancer Research, abstract
published in reference [88]) and show very similar activity.
The hit rate in the HTS, using a very similar assay protocol,
was approximately 0.002%. Crystallographic studies
confirmed that these compounds share a common binding
mode. This series of compounds have progressed [89] and
currently are in late lead optimisation. The rest of the hits
cluster in 5 chemical families, all of which have been
confirmed to bind to the docking site by NMR or X-ray
crystallography. These compounds have provided back-up
series.

Summary

The HSP90 results show that rDock is capable of rapidly
identifying high quality, tractable hits from large compound
libraries. This is ultimately a more important and practical
validation of the platform for industrial VS than the
idealised test results for docking accuracy and seeded
libraries reported above. Whilst it is natural to focus on the
overall assay hit rate as a measure of success, a much more
meaningful metric is the quality, diversity and novelty of
the hit compounds identified, as this will dictate the ability
of VS to properly fuel chemistry lead optimisation
programs.

CHALLENGES IN STRUCTURE-BASED VIRTUAL
SCREENING

The evolution of docking programs, together with the
steady increase of computational power and the universal
access to chemical collections have resulted in real
applications of docking-based VS both in academic and
industrial environments. We have described some success
stories, but molecular docking can and needs to be improved
further to establish itself as a cornerstone of drug discovery.
In our opinion, the following points will have a major
impact in the future of docking-based VS.

Inclusion of the Effect of the Solvent

Water, the most abundant component of living organism,
has a profound effect on biochemical systems. Particularly in
the process of molecular association, both the ligand and the
receptor have to be partially desolvated in order to form a
complex. A wide range of theoretical methods have been
developed to account for the solvent effect [90], but only a
handful are fast enough to be of use for docking. Given that
in empirical and knowledge-based scoring functions the
effect of solvent is implicitly accounted for, the groups

using force-field based scoring functions have been more
actively experimenting with methods to include the effect of
solvent [35,54,91,92]. Recently rDock has combined an
empirical scoring function with a solvation term based on
the change of solvent accessible surface area [22]. In spite of
the use of rough approximations, these studies confirm that
explicit consideration of the effect of the solvent provides
improved results and is the way forward.

Flexibility of the Receptor

The treatment of the binding site of the macromolecular
target as a rigid body is an oversimplification used in the
vast majority of molecular docking applications. Moreover,
in most cases only one structure of the receptor is used. The
quality of this approximation will depend very much on the
particular flexibility of the docking site and is considered to
be responsible for the poor results obtained with specific
macromolecular targets (see Table 2). This well-known
limitation has stimulated the development of strategies to
take into account the flexibility of the receptor, which have
been reviewed recently [93-95]. So far, no consensus has
been reached as for which methods will provide the best
results but, given the extent of ligand-induced changes in the
binding sites of proteins [96], it is expected that it will have
a major impact on the quality of docking results.

Scoring Functions

In spite of its evolution, the scoring functions continue
to be one of the factors limiting the success of VS. This
limitation is more apparent in the hit-to-lead and lead
optimisation phases of drug discovery, when libraries are
designed around common scaffolds and the interaction
energy gap between the best inhibitors and the rest of the
compounds is relatively small. It is expected that as larger
sets of structures and binding data become available (through
initiatives as the Ligand-Protein Database [97], for example),
empirical and knowledge-based scoring functions will
continue to improve. Force-field based scoring functions, on
the other hand, are expected to improve via application of
“first principles” to incorporate as many terms of the binding
free energy as possible (solvation, internal energy of the
receptor, entropy). One-window free energy grids represent a
very interesting example of this tendency [98,99].

As a medicinal chemistry project evolves, more and more
inhibitors of the therapeutic target become available. This
provides the possibility to create training sets, which can be
used to check the performance and/or to optimize the scoring
function. In the first case, several scoring functions can be
tested on their own or in combination (consensus scoring
[51]) to find which one performs best. Going one step
beyond, the combination of structural information with
QSAR tools allows the scoring functions to be tailored to
the specific site of interest [100-102].

Integration with other Drug Discovery Technologies

Experiments with seeded libraries (see above)
demonstrate that, in real applications, docking can provide
up to 30-fold enrichment factors in the first half percent of
the virtual library [51]. This means that, in the best scenario,
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if an initial library of one million compounds is docked,
approximately 5000 compounds would have to be assayed
and only 10-15% of the real hits would actually be found,
which is likely to translate into relatively low hit rates.
Future developments of docking will certainly improve these
figures but, to make VS a real alternative to HTS, docking
has to be integrated with other computational techniques
able to make use of empirical information (e.g. similarity,
pharmacophoric constraints, substructural searches, etc.).
This is illustrated by the real VS examples provided in
Table 3. New programs, integrating docking with similarity
[48,52], pharmacophoric restraints [103,104] or other tools
might not be conceptually ground-breaking, but are likely to
prove themselves extremely useful.

One of the pitfalls of HTS is the hit attrition rate, due to
low quality hits. Thanks to its in-silico nature, VS is ideally
suited to avoid this problem by means of “quality filters”
applied upfront in order to guarantee an adequate profile of
the docking library. This should include not only solubility,
permeability and chemical stability, but also good chemical
tractability to facilitate a rapid progression in the subsequent
phases of drug discovery. Even if these prefilters imply
lower hit rates, the parallel optimization of all these
parameters since the early stages will accelerate the whole
process.

CONCLUSION

Both the validation tests and real VS experiments have
shown the capacity of docking tools to predict the binding
mode of a ligand to its receptor and to gather most of the
binders at the top of a ranked library of compounds.
Nevertheless, it is also accepted that the greatest degree of
success is obtained when docking-based VS benefits from
target-dependant “fine-tuning”, which requires experimental
information and expert user input.

The low cost of VS is one of its main appeals, but it
provides other benefits, such as more flexibility, faster
timelines and better integration with the discovery platform,
but the decision of going into the VS or the HTS route will
ultimately be very dependant on the particular circumstances
of the project and the research organization. While big
pharmaceutical companies with HTS facilities in place might
prefer to explore every single compound to avoid VS false
negatives, smaller companies and academic institutions
might be able to benefit from the lower cost, better
flexibility and faster timelines associated with VS.

LIST OF ABBREVIATIONS

VS = Virtual Screening

HTS = high-throughput screening

RMSD = root-mean square deviation

nRot = number of rotatable bonds

EF = enrichment factor

ACD = Available Chemical Directory

NCI = National Cancer Institute

NWU-DOCK = North Western University version of
DOCK

PMF = Potential of Mean Force
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